Solutions to Problems from 11/6 Handout

Exercise 1. Prove that f is 1-1 iff f^{-1} is a function from Y to X.

Proof.

- (\Longrightarrow) Suppose that f is 1-1. Then if $(x_1, y), (x_2, y) \in f$ we have that $x_1 = x_2$. Consider $(y, x_1), (y, x_2) \in f^{-1}$. We already know that $x_1 = x_2$. Thus, since x_1 and x_2 were arbitrary, f^{-1} is a function.
- (\Leftarrow) Suppose that f^{-1} is a function. Then if $(y, x_1), (y, x_2) \in f^{-1}$, we have $x_1 = x_2$. Consider $(x_1, y), (x_2, y) \in f$. Since f^{-1} is a function, we have that $x_1 = x_2$. Thus, since x_1 and x_2 were arbitrary, f is a function.

Exercise 2. Prove that if $A \subset B$ in X, then $f(A) \subset f(B)$ in Y.

Proof. Let $f(a) \in f(A)$. Then $a \in A$. Since $A \subset B$, $a \in B$. Thus $f(a) \in f(B)$. Therefore, $f(A) \subset f(B)$. \square

Exercise 3.

- (1) Prove or give a counterexample to the statement: $f(A \cap B) = f(A) \cap f(B)$.
- (2) Prove or give a counterexample to the statement: $f(A \cup B) = f(A) \cup f(B)$.

Proof.

- (1) Let A = (-1, 0) and let B = (0, 1), then $A \cap B = \emptyset$. Let $f(x) = x^2$. Then $f(A \cap B) = \emptyset$, f(A) = (0, 1), f(B) = (0, 1), and $f(A) \cap f(B) = (0, 1) \neq \emptyset$. Thus $f(A \cap B) \neq f(A) \cap f(B)$.
- (2) (C) Let $f(x) \in f(A \cup B)$. Then $x \in A \cup B$. So either $x \in A$ or $x \in B$. WLOG assume that $x \in A$. Then $f(x) \in f(A) \subset f(A) \cup f(B)$. Thus $f(A \cup B) \subset f(A) \cup f(B).$
 - (\supset) Let $f(x) \in f(A) \cup f(B)$. So either $f(x) \in f(A)$ or $f(x) \in f(B)$. WLOG assume that $f(x) \in f(A)$. Then $x \in A \subset A \cup B$. Then $f(x) \in f(A \cup B)$. Thus $f(A) \cup f(B) \subset f(A \cup B)$.

Exercise 4. Prove that if $A \subset B$ in Y, then $f^{-1}(A) \subset f^{-1}(B)$ in X.

Proof. This is done in a very similar way to exercise 2.

Exercise 5.

- (1) Prove or give a counterexample to the statement: $f^{-1}(A \cap B) = f^{-1}(A) \cap$ $f^{-1}(B).$
- (2) Prove or give a counterexample to the statement: $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(A \cup B)$ $f^{-1}(B).$

Proof.

- (1) (C) We get $f^{-1}(A \cap B) \subset f^{-1}(A) \cap f^{-1}(B)$ from the previous exercise.
- (\supset) Let $x \in f^{-1}(A) \cap f^{-1}(B)$. Then $f(x) \in A$ and $f(x) \in B$. Equivalently (a) Let $x \in f$ (b) $A \cap B$. Thus $x \in f^{-1}(A \cap B)$. (a) (b) We get $f^{-1}(A \cup B) \supset f^{-1}(A) \cup f^{-1}(B)$ from the previous exercise.
- - (C) Let $x \in f^{-1}(A \cup B)$. Then $f(x) \in A \cup B$. WLOG, assume $f(x) \in A$. Thus $x \in f^{-1}(A) \subset f^{-1}(A) \cup f^{-1}(B)$.

Exercise 6. Prove that the set of all finite subsets of \mathbb{N} is countable.

Proof. From a previous homework exercise we know that the subset $FS1 \subset 2^{\mathbb{N}}$ of sequences where all but finitely many terms are 0 is countable. We will create a bijection between this set and the subset $F \subset \wp(\mathbb{N})$. We have the function $\chi_A: X \to \mathbf{2} = \{0, 1\}$ defined by $\chi_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$. Define $\chi: \wp(X) \to \mathbf{2}^X$ by $\chi(A) = \chi_A$. Let $X = \mathbb{N}$. To create this bijection we restrict the domain of χ to F. Let $S \in F$. Then S has a biggest number, call it n, since it is finite. Thus χ_S will have all zeros past the n^{th} term. Thus $\chi_S \in FS1$. Thus $\chi|_F: F \to FS1$. Let $q \in FS1$, then create a set, N, of numbers in the following way: if q has a 1 in the i^{th} position, then put i in N. Do this for each 1 in the sequence. Then, since there are finitely many 1's, the set N will be finite and an element of F. Thus $\chi|_F$ is onto. Following the same idea, if we have that $\chi_C = \chi_D$, then we can see that C = D, so $\chi|_F$ is 1 - 1. Therefore $\chi|_F$ is a bijection and thus F is countable. \Box